Non-trivial d-wise intersecting families

نویسندگان

چکیده

For an integer d?2, a family F of sets is d-wise intersecting if for any distinct A1,A2,…,Ad?F, A1?A2?…?Ad??, and non-trivial ?A?FA=?. Hilton Milner conjectured that k?d?2 large enough n, the extremal (i.e. largest) k-element subsets [n] is, up to isomorphism, one following two families:A(k,d)={A?([n]k):|A?[d+1]|?d}H(k,d)={A?([n]k):[d?1]?A,A?[d,k+1]??}?{[k+1]?{i}:i?[d?1]}. The celebrated Hilton-Milner Theorem states H(k,2) unique, k>3. We prove conjecture stability theorem, stating subfamily A(k,d) or H(k,d).

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weighted Non-Trivial Multiply Intersecting Families

Let n,r and t be positive integers. A family F of subsets of [n]={1,2, . . . ,n} is called r-wise t-intersecting if |F1∩·· ·∩Fr|≥ t holds for all F1, . . . ,Fr ∈F . An r-wise 1-intersecting family is also called an r-wise intersecting family for short. An r-wise t-intersecting family F is called non-trivial if |⋂F∈F F |<t. Let us define the Brace–Daykin structure as follows. F BD = {F ⊂ [n] : |...

متن کامل

Non-trivial intersecting uniform sub-families of hereditary families

For a family F of sets, let μ(F) denote the size of a smallest set in F that is not a subset of any other set in F , and for any positive integer r, let F (r) denote the family of r-element sets in F . We say that a family A is of Hilton-Milner (HM ) type if for some A ∈ A, all sets in A\{A} have a common element x / ∈ A and intersect A. We show that if a hereditary family H is compressed and μ...

متن کامل

Weighted 3-Wise 2-Intersecting Families

Let n and r be positive integers. Suppose that a family F ⊂ 2[n] satisfies |F1 ∩ F2 ∩ F3| ≥ 2 for all F1, F2, F3 ∈ F . We prove that if w < 0.5018 then ∑ F∈F w |F |(1− w)n−|F | ≤ w2.

متن کامل

Stability Analysis for k-wise Intersecting Families

We consider the following generalization of the seminal Erdős–Ko–Rado theorem, due to Frankl [5]. For some k ≥ 2, let F be a k-wise intersecting family of r-subsets of an n element set X, i.e. for any F1, . . . , Fk ∈ F , ∩ k i=1Fi 6= ∅. If r ≤ (k − 1)n k , then |F| ≤ ( n−1 r−1 ) . We prove a stability version of this theorem, analogous to similar results of Dinur-Friedgut, Keevash-Mubayi and o...

متن کامل

On Symmetric 3-wise Intersecting Families

A family of sets is said to be symmetric if its automorphism group is transitive, and 3-wise intersecting if any three sets in the family have nonempty intersection. Frankl conjectured in 1981 that if A is a symmetric 3-wise intersecting family of subsets of {1, 2, . . . , n}, then |A| = o(2). Here, we give a short proof of Frankl’s conjecture using a sharp threshold result of Friedgut and Kalai.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Combinatorial Theory, Series A

سال: 2021

ISSN: ['0097-3165', '1096-0899']

DOI: https://doi.org/10.1016/j.jcta.2020.105369